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bstract

This paper deals with dynamic models of Ni-mH battery and focuses on the development of the equivalent electric models. We propose two
quivalent electric models, using Cauer and Foster structures, able to relate both dynamic and energetic behavior of the battery. These structures are

ell adapted to real time applications (e.g. Battery Management Systems) or system simulations. A special attention will be brought to the influence
f the complexity of the equivalent electric scheme on the precision of the model. Experimental validations allow to discuss about performances
f proposed models.

2005 Elsevier B.V. All rights reserved.

vehi

M
t
t
p
p
[
t

e
t
d
t
t
d
p
e

2

eywords: Battery modelling; Nickel metal hydride; Equivalent circuit; Hybrid

. Introduction

In the embedded electric systems, knowing the dynamic
lectric storage components is necessary for the optimisation
f such systems. However, batteries remain the most difficult
lements to model. The prediction of dynamic behaviors of bat-
eries is essential to estimate the State of Charge (SoC) and
he State of Health (SoH). Energetic flows inside the battery
an be calculated using entropy variations. Such a method is
edicated to electrochemists and requires the knowledge of
xperimental parameters, which are not always accessible to the
on-specialists [1,2]. Moreover, such methods need long time
omputations and cannot be implemented in processor, which
re dedicated to real time applications (e.g. Battery Manage-
ent Systems). Another method consists in representing battery

sing an equivalent electric circuit [3,4]. This method is easier
o be implemented. Nevertheless, performances of the model are
ased on the effectiveness of the equivalent electric circuit. The
ircuit must be simple enough to be easily implemented in the
eal time applications but must be accurate enough to represent

he main phenomena.

Under the linearity assumption, spectroscopy allows to rep-
esent the battery impedance in relation with frequency [5].

∗ Corresponding author. Tel.: +33 3 44 23 45 15; fax: +33 3 44 23 79 37.
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ost of battery equivalent electric circuits are based on spec-
roscopy experiments [6–9]. However, because of the nature of
he diffusion phenomenon, this one remains the most difficult
henomenon to be modelled. To overcome this difficulty, some
apers have proposed models based on non-integer derivatives
9–11]. Nevertheless, their development for real time applica-
ions is not trivial [12].

We propose in this paper a Ni-mH battery model using an
quivalent electric circuit. The first part is dedicated to the jus-
ification of the electric component. This part focuses on the
iffusion representation and we propose an analytical model. In
he second part, this model is developed into Cauer and Fos-
er structures. Identification results are presented and allow to
iscuss eventual order reduction. The last parts presents tem-
oral responses to proposed models and are compared with
xperiments.

. Lumped scheme

In previous works [9], we had proposed a modified Randles
cheme of a Ni-mH battery. This scheme is represented Fig. 1.

This scheme relates the main static and dynamic phenomena:

� stands for electrolyte and connexion resistances. The RtcCdl
arallel circuit stands for charge transfer phenomenon. In the
yquist plot (Fig. 2), charge transfer phenomenon is defined as
semi-circle. A Warburg impedance ZW stands for the diffusion
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Fig. 1. Modified Randles scheme.

henomenon which is theoretically defined as 45◦ slope in the
yquist plot.
In the framework of Ni-mH battery modelling, it seems

hat charge transfer and diffusion phenomena occur in distinct
requency areas. Consequently, Warburg impedance appear in
eries with the RtcCdl parallel circuit in the modified Ran-
le scheme, which is not the case in the traditional Randles
cheme [6]. This modification brings simplifications in the fol-
owing mathematical expressions and the impedance expression
ecomes:

(s) = R� + Rtc

1 + sRtcCdl
+ ZW(s) (1)

he main difficulty of battery dynamic modelling remains the
iffusion phenomenon. In the framework of a semi-infinite dif-
usion, Warburg impedance is theoretically expressed as a non-
nteger function [13].

W(s) = σω1/2(1 − j) (2)

here σ is a parameter which depends on the electrochemical
henomenon.

In the framework of a pure mathematical approach of the
roblem, we have shown that Warburg impedance could be mod-
lled as a non-integer transfer function, the mathematical struc-
ure of which was asymptotically defined from spectroscopy
xperiments Bode plot [9].
The non-integer transfer function is defined as:

W(s) = (1 + τ2s)n2

(τ1s)n1
(3)

Fig. 2. Nyquist plot of a cell.
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e had shown that such an expression gives good performances
or the representation of the battery dynamic behavior. However,
his model has two drawbacks:

On one hand, the temporal expression of non-integer transfer
function requires the knowledge of injected currents from the
initial time up to the final one. This feature is due to the recur-
sivity of diffusion phenomenon and, forbid as a consequence,
the use of this model in real time applications. Nevertheless,
this lack has been overcome using diffusive realisations [12].
On the other hand, such a pure mathematical model gives
a good representation of dynamic behavior but misses ener-
getic aspects. Consequently, it does not make possible the
evaluation of energetic losses inside the battery. In order to
overcome this lack, we lead our research to an equivalent
electric scheme of Warburg impedance, the resistive compo-
nents of which could be used for the estimation of energetic
losses.

The method consists in developing an analytical model of
arburg impedance in functions series, and identifying this

evelopment with an equivalent impedance composed of capac-
ties and resistances.

The used analytical model of Warburg impedance is an hyper-
olic tangent one. This model has already been proposed in
revious works [7]:

W(s) = k2√
s

tan h

(
k1

k2

√
s

)
(4)

he two following sections are dedicated to the development of
his model into electric equivalent structures.

. Development in serie of Warburg impedance

.1. Mittag-Leffler’s theorem

Mittag-Leffler theorem can be considered as a generalisation,
o the meromorphic functions, of partial fraction decomposition.
ll complex rational fractions can be decomposed into a sum of
rst order elements. Particularly, if a rational function P/Q has
o simple pole pn, 1 ≤ n ≤ N, P/Q can be written as:

P(x)

Q(x)
= A(x) +

N∑
n=1

an

(x − pn)
(5)

here A is a polyoma and an is the residue corresponding to the
ole pn.

Let us consider a meromorphic function f with only simple
oles pn ordered to increasing modulus. If a serie of circles Cn,
ith the radius Rn, exists in the complex plane, independent of

ny pole of function f, |f(x)| < M, M is independent of n so that
n → ∞ when n → ∞, then Mittag-Leffler’s theorem give the
ollowing decomposition:

(x) = f (0) +
∞∑

n=1

an

(
1

x + pn

+ 1

pn

)
(6)
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yperbolic tangent verifies theorem and can be decomposed
ollowing an infinite number of imaginary poles

n = j
(
nπ − π

2

)
(7)

fter simplifications, hyperbolic tangent can be written as a
eries of function

an h(x) =
∞∑

n=−∞

1

x − j
(
nπ − π

2

) (8)

sing properties of complex conjugate poles, the series can be
ewritten as:

an h(x) =
∞∑

n=1

2x

x2 + (
nπ − π

2

)2 (9)

.2. Foster structure

Hyperbolic tangent used to model Warburg impedance can
e decomposed using Mittag-Leffler’s theorem.

W(s) = k2√
s

∞∑
n=1

2k1
√

s
k2(

k1
k2

)2
s + (

nπ − π
2

)2
(10)

his expression can be simplified:

W(s) =
∞∑

n=1

1
k1

2k2
2
s + 1

2k1

(
nπ − π

2

)2 (11)

he series of function can be identified as a series of cells made
f admittance and impedance.

W(s) =
∞∑

n=1

1

Yn + 1
Zn

(12)

y limiting the development to the 2n main poles, we get a finite
oster network synthesis Fig. 3 [14,15].

The values of the components can be deduced by identifica-
ion:

n = 2k1(
nπ − π

2

)2 ; Yn = k1

2k2
2

s (13)

onsequently, the admittances Yn denote capacities and

mpedances Zn denote resistances so that:

n = 8k1

(2n − 1)2π2
; Cn = k1

2k2
2

(14)

Fig. 3. Reduced order model for Zw.
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.3. Development into continued fractions

Nowadays, developments into continued fractions are still
sed to get rational approximations for numerical solving of
omplex problems, especially in theoretical physical domain.
he French mathematician H. Padè (1863–1953) gave his name

o a class of such approximations, which were formalized by
agrange and Lambert’s works. Padé approximation is a partial

raction P/Q, the development of which fits as best as possible
he f function to be approximated, so that [16]:

(x)f (x) − P(x) = O(xm+n+1) (15)

here P and Q are polynomials, the degrees of which are respec-
ively equal or inferior to m and n. If such polynomials exist, they
efine a unique partial fraction called Padé approximation.

Let us consider the development in series of hyperbolic tan-
ent:

an h(x) = x − 1

3
x3 + 2

15
x5 + · · · (16)

r

an h(x) = 1
1

x− 1
3 x3+ 2

15 x5+···
(17)

he inverse of hyperbolic tangent can be developed in Laurent
eries:

1

x − 1
3x3 + 2

15x5 + · · · = 1

x
+ x

3
− x3

45
+ · · · (18)

y using this development in the previous expression we get:

an h(x) = 1
1
x

+ 1
3
x
+ x

5 + x3
175 +...

(19)

y repeating the development into Laurent series of residues
e get a development into continued fractions of hyperbolic

angent.

an h(x) = 1
1
x

+ 1
3
x
+ 1

5
x + 1

7
x +···

(20)

.4. Cauer structure

The development into continued fractions of our model of
arburg impedance leads to:

k2√
s

tan h

(
k1

k2

√
s

)
= k2√

s

1
1

k1
k2

√
s
+ 1

3
k1
k2

√
s

+ 1
5

k1
k2

√
s

+ 1
7

k1
k2

√
s

+···

(21)

fter simplification we get:

1

W(s) = 1

k1
+ 1

3k2
2

k1s
+ 1

5
k1

+ 1
7k2

2
k1s

+···

(22)
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Fig. 5. Reduced order model using Foster structure.

t
a
c
t
v

e
i
l
w
p
C

t
d

r
E

p
n

Fig. 4. Reduced order model for Zw.

his expression can be identified in relation with the following
mpedance:

W(s) = 1
1
Z1

+ 1
1
Y1

+ 1
1

Z2
+ 1

1
Y2

+···

(23)

ith

n = k1

4n − 3
; Yn = k1s

k2
2(4n − 1)

(24)

onsequently, the admittances Yn denote capacities and
mpedances Zn denote resistances so that:

n = k1

4n − 3
; Cn = k1

k2
2(4n − 1)

(25)

he corresponding equivalent electric circuit is presented as a
auer network synthesis Fig. 4 [17].

. Identification

.1. Initialisation and identification process

We have shown in the previous parts how we obtained
rom development of an analytical model two equivalent elec-
ric circuits. Foster structure has been deduced from develop-

ent based on Mittag-Leffler theorem, and Cauer structure has
een deduced from development based on continued fractions.
n order to prevent time calculation expansion, in the frame-
ork of a real time implementation of the model, we have
imited the number of RC cells corresponding to the Warburg
mpedance model. In a first step, we fixed the number to four
ells. The corresponding equivalent electric structures are pre-
ented Figs. 5 and 6.

t
e
i
b

Fig. 7. Nyquist plots at SoC 60%
Fig. 6. Reduced order model using Cauer structure.

Each component of the structures must be identified in order
o approximate as best as possible spectroscopy experiments on
wide frequency range (l0−3 Hz up to 46 Hz) and for states of

harge 60%, 80% and 99%. These states of charge correspond to
he range where batteries traditionally operate in electric hybrid
ehicle.

Identification process consists in minimizing least square
rrors of real and imaginary parts between actual and estimated
mpedances. This well known method is called complex non-
inear least squares method [18]. In a first step we use Eq. (1) in
hich we identified the parameters R�, Rtc, Cdl, K1, K2. Then,
arameters k1 and k2 are used to set up parameters of Foster and
auer structures according to Eqs. (14) and (25).

Nyquist plots show clearly the semi-circle, which represents
he charge transfer phenomenon and 45◦ slope, which represents
iffusion phenomenon.

We have represented in Fig. 7 and Table 1 identification
esults of Cauer and Foster structures with four cells set up using
qs. (14) and (25).

We can see that model fits very well the charge transfer
henomena (semi-circle feature). As regards the diffusion phe-
omena, we can see that the modelling is not perfect. Indeed,
he slope represented by the two models does not correspond

xactly to the actual slope. Moreover, models loose precision
n the very low frequencies. We can also notice a difference
etween the slopes of the models.

and 99% with four cells.
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Table 1
Values of components for the Cauer and Foster structure (four cells)

SoC 60 (k1 = 7.6 × 10−3,
k2 = 2.98 × 10−4)

SoC 80 (k1 = 7.5 × 10−3,
k2 = 3.01 × 10−4)

SoC 99 (k1 = 9.55 × 10−3,
k2 = 3.73 × 10−4)

Cauer Foster Cauer Foster Cauer Foster

R� (m�) 6.17 6.17 6.21 6.21 6.25 6.25
Rtc (m�) 0.91 0.91 0.96 0.96 0.93 0.93
Cdi (F) 73.31 73.31 75.25 75.25 77.7 77.7
R1 (m�) 7.6 6.16 7.5 6.07 9.5 7.7
C1 (F) 28527 42791 27575 41363 22880 34321
R2 (m�) 1.52 0.68 1.5 0.67 1.9 0.86
C2 (F) 12226 42791 11818 41363 9805 34321
R3 (m�) 0.84 0.24 0.83 0.24 1.06 0.30
C3 (F) 7.78 42791 7520 41363 6240 34321
R4 (m�) 0.58 0.12 0.57 0.12 0.73 0.15
C4 (F) 5705 42791 5515 41363 4576 34321

99% w
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Fig. 8. Nyquist plots at SoC 60% and

.2. Enhanced model

In order to get a better fitting, we use the previous identifi-
ation results as a set up for parameters structures on which we

re repeating the complex non-linear least squares method.

The parameters set becomes R�, Rtc, Cdl, R1, C1, R2, C2,
. ., Rn, Cn. The increase of parameters number (in our case 11
lements instead of five in the previous part) allow to increase

t
w
r

able 2
ptimised values of components for the Cauer and Foster structure (four cells)

Cauer

SoC 60% SoC 80% SoC 99

� (m�) 6.17 6.21 6.2

tc (m�) 0.41 0.49 0.3

dl (F) 52.8 54.3 60.5

1 (m�) 13.1 20.9 17.1

1 (F) 28187 30812 20165

2 (m�) 2.38 2.65 2.2

2 (F) 7857 18287 5262

3 (m�) 2.372 2.56 2.6

3 (F) 618 2187 519

4 (m�) 2.42 2.20 2.1

4 (F) 188 208 209
ith enhanced parameters (four cells).

he number of degrees of freedom which offer a finest approach
f spectroscopy experiments.

Fig. 8 and Table 2 present identification results with these
arameters improvement.
With this identification process and parameter refinement,
he Cauer and Foster structure give the same results and fit very
ell both charge transfer and diffusion phenomena on the whole

ange of spectroscopy experiments.

Foster

% SoC 60% SoC 80% SoC 99%

5 6.17 6.21 6.25
9 0.41 0.49 0.39

52.8 54.6 60.6
10.95 18.2 15

40203 40164 26000
1 1.04 1.37 0.88

33724 67286 28078
4 0.29 0.49 0.32

836 15336 6054
2 0.84 0.83 0.86

144 191 149
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.3. Reduced order model

Keeping in mind the possibility to implement the battery
odel in a real time application, we wanted to reduce the order of

he model. Consequently, we have reduced to three RC cells, the
quivalent circuit of Warburg impedance in the two structures.
he identification process is the same as in the previous sec-

ion. Fig. 9 and Table 3 present the corresponding identification
esults. The order reduction of the model damages the quality of
iffusion approximation. The choice of four RC cells to model
iffusion phenomenon seems to be the best trade off in our appli-
ation. We are going to validate time responses of the three and
our cells structures in order to verify the performances.

. Current steps validations

In the previous section, we have presented spectroscopy
xperiments and model of one element of our battery. This one
s made of 32 elements 1.2 V 13.5 A h in series. Consequently,
nder the assumption of homogeneous behavior of the 32 ele-
ents, we have considered the model of our battery as 32 times
he model of one element. In the following sections, we present
omparisons between experimental and simulation results of
urrent steps responses. The current steps have been imposed
o the battery thanks to a linear amplifier.

a

b
o

able 3
alues of components for the Cauer and Foster structure (three cells)

Cauer

SoC 60% SoC 80% SoC 99%

� (m�) 6.17 6.21 6.2

tc (m�) 0.46 0.49 0.4

dl (F) 50.8 54.5 57.8

tc (m�) 8.2 11.5 11.9

1 (F) 18553 21127 15527

2 (m�) 1.47 1.5 1.5

2 (F) 1403 2473 1170

3 (m�) 2.03 1.92 1.9

3 (F) 189 208 201
ith enhanced parameters (three cells).

.1. Short current steps validations

We have imposed current sollicitations to our battery.
igs. 10 and 11 present voltage variations, around equilib-
ium voltage, of experimental and simulation results when we
mposed −C

3 up to C
3 current steps. We can see that the structures

ith three or four cells give similar responses and are very close
rom actual battery response.

These good results can be explained because fundamental
requency of current steps (0.5 Hz) is relatively high and cor-
esponds to charge transfer frequencies range (Fig. 2). In this
rea (semi-circle), the structures with three or four cells model
erfectly spectroscopy experiments Figs. 8 and 9.

.2. Long current steps validations

We have also validated steady current steps by imposing a
C
3 constant current during 1000 s. Results of Fig. 12 show the
ivergence between model and battery responses of voltage vari-
tions around equilibrium voltage. The difference is, all the more
mportant for the structure with three cells because of the bad

pproximation of this structure in the very low frequencies.

These validations show the difficulty to model the dynamic
ehavior of the battery in a wide range of frequencies and focuses
n the importance of the model structure.

Foster

SoC 60% SoC 80% SoC 99%

5 6.17 6.21 6.25
5 0.46 0.49 0.45

50.8 54.5 57.8
6.95 10.2 10.6

25931 27140 19706
0.82 0.82 0.49

169 194 8152
3 0.45 0.54 0.85

10728 15120 174
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Fig. 10. Alternative step responses at SoC 60% and 99%.
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Fig. 11. Zoom of alternative s

However, it is necessary to relativize the extrapolation in
he very low frequencies or in steady state. On one hand, we
ave no information about battery impedance in this frequency
ange, and on another hand, the notion of dynamic impedance
n this frequency range has no significant sense. Indeed, at very
ow frequency or in steady states, it is not possible to obtain
orrect spectroscopy experiments because the state of charge

hanges significantly when measuring and consequently, param-
ters change also in the same way. In this area, Nyquist plot at
given state of charge has no more sense.

p
F
t

Fig. 12. Long step responses
sponses at Soc 60% and 99%.

. Conclusion

We have presented in this paper two equivalent electric cir-
uits to model the dynamic behavior of a Ni-mH battery. The
roposed Cauer and Foster structures made possible the mod-
lling of the diffusion phenomenon using a finite network of
apacities and resistances despite the recursive nature of this

henomenon. We have shown that developments into Cauer or
oster structures have given similar results in condition to refine

he identification process on the whole parameters. We attempted

at SoC 60% and 99%.
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mplementation of such a model for an embedded applications
ike a battery management system easier. In this framework, we
ave shown that four cells to model diffusion phenomenon was
he best trade off between performance and complexity. Finally,
e have established the validity limits in a frequency range of

uch a dynamic model.
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